首页> 外文OA文献 >Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor
【2h】

Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor

机译:透射干涉等离子体传感器的光学传感和等离子体结构复反射系数的确定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The combination of interferometry and plasmonic structure, which consists of gold nanoparticle layer, sputter coated silicon oxide spacer layer, and aluminum mirror layer, was studied in transmission mode for biosensing and refractive index sensing applications. Because of the interferometric nature of the system, the information of the reflection amplitude and phase of the plasmonic layer can be deduced from one spectrum. The modulation amplitude in the transmission spectrum, caused by the interference between the plasmonic particle layer and the mirror layer, increases upon the refractive index increase around the plasmonic particles due to their coherent backscattering property. Our proposed evaluation method requires only two light sources with different wavelengths for a stable self-referenced signal, which can be easily and precisely tuned by a transparent spacer layer thickness. Unlike the standard localized surface plasmon sensors, where a sharp resonance peak is essential, a broad band plasmon resonance is accepted in this method. This leads to large fabrication tolerance of the plasmonic structures. We investigated bulk and adsorption layer sensitivities both experimentally and by simulation. The highest sensitivity wavelength corresponded to the resonance of the plasmonic particles, but useful signals are produced in a much broader spectral range. Analysis of a single transmission spectrum allowed us to access the wavelength-dependent complex reflection coefficient of the plasmonic particle layer, which confirmed the reflection amplitude increase in the plasmonic particle layer upon molecular adsorption.
机译:以金纳米颗粒层,溅射涂覆的氧化硅间隔层和铝镜层组成的干涉测量和等离激元结构的结合,以透射模式进行了研究,用于生物传感和折射率传感应用。由于系统的干涉特性,可以从一个光谱中推导出等离子体层的反射幅度和相位信息。由于等离子粒子的相干反向散射特性,随着等离子粒子周围的折射率增加,由等离子粒子层和反射镜层之间的干涉引起的透射光谱中的调制幅度会增加。我们提出的评估方法仅需要两个波长不同的光源即可获得稳定的自参考信号,该信号可以通过透明的间隔层厚度轻松而精确地进行调整。与标准的局部表面等离子体激元传感器不同,在标准的局部表面等离子体激元传感器中,必须要有一个尖锐的共振峰,这种方法可以接受宽带等离子体激元共振。这导致等离子体结构的较大制造公差。我们通过实验和模拟研究了体积和吸附层的敏感性。最高灵敏度的波长对应于等离激元粒子的共振,但是有用的信号会在更宽的光谱范围内产生。对单个透射光谱的分析使我们能够访问等离子体粒子层的波长相关复反射系数,这证实了分子吸附后等离子体粒子层中的反射幅度增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号